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Chaotic dynamics of an air-damped bouncing ball
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A ball bouncing elastically upon a vertically vibrated platform is one of the simplest examples of a chaotic
system. If dissipation is introduced at each bounce through a coefficient of restitution, the motion is no longer
chaotic; the trajectories exhibit locking solutions that result in periodic behavior. Here we investigate the
dynamics of a bouncing ball influenced by air damping. We consider the effects of both static air and air
moving with the platform, and show that there is an exact mapping between them. In either case, the system
has a rather complex dynamical behavior including truly chaotic trajectories. Our results highlight the impor-
tance of air effects for fine particulate systems.
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One of the simplest examples of a nonlinear dynamical d2z dz dz
system is a ball bouncing elastically upon a vertically vi- m—2+,u(a— ar +mg=0 (1)
brated surfac¢l]. Such a system exhibits a range of com- dt
plex behavior including periodic motion, a period-doubling
cascade, and fully developed chaos, depending upon the arfi?
plitude and frequency of the surface vibrati®j. This ide- ,
z;=Asin(wt), (2

alized system captures many of the features observed experi-
mentally [3—7]. However, in reality, the ball undergoes ) ) ) o
inelastic collisions with the surface, dissipating energy. If"espectively. Herey is the viscous drag coefficied is the

this energy loss is accounted for by introducing a constan@MPplitude of vibration, and is the vibration frequency. It is
coefficient of restitutionr <1, the resulting system is no Convenient to introduce dimensionless variables
longer truly chaotic; it exhibits locking solutiorj8,9]. The

relative velocity of the ball and the surface goes to zero _Z — ot 3)
within a large but finite time; the ball will then leave the y A TTe
surface again when the downward acceleration excgeadsl
this behavior will repeat periodicallyl0]. for the position of the particleg, at timet, and
The inelastic bouncing ball has been used as a simplified
model of vibrated granular medjal]. Recently, however, it L Aw?
has been realized that for fine particulates, the interaction of A=y I'= T (4)

the particles with the surrounding air can have important
effects on the dynamical behavipt2]. Specifically, it has
been shown that air effects are the driving mechanism fo

Faraday pilind 13], the air-driven Brazil nut effedtl4], and Equations(1) and (2) can readily be solved analytically

sepl)ar?;!on mta mixture ofdflnetﬁargcula@sﬁ].l behavi ¢ for any initial conditions. Assume that at sonGescaled
n this note, we consider the dynamical behavior of 8., 79, the particle leaves the surface at height with

single air-damped bouncing ball. It is well known that, if . . . : .
Stokes’s law damping is the only dissipative mechanism, é/ertmal velocityv . The corresponding height of the particle

ball dropped onto a stationary surface does not come to re&l’ d surface after a time intervalare given by

in a finite time. This is because the dissipation goes to zero

linearly with the ball’s velocity. Here we investigate the be- 7)=Yo— L_,_ _(UO+ _—

havior of the ball if the surface is vibrated vertically. We ra A I'A

consider two situations; either the air is assumed to move 1

with the surface or to remain static. We find that the dynam- + —[asin(ry)—Bcog ) ](1—e 27)

ics exhibit many features in common with the elastic ball A

problem, in particular, the ball never comes to rest on the _ : o

surface and the motion is thus truly chaotic. *afcod 7+ 7o) — oS 7o) I+ A SIn(7+ 70) = SiN( 7o) ]
Consider a single particle of mass moving vertically 6)

above a sinusoidally vibrating surface under the influence of

gravity and air damping. We will initially assume that the air and

is moving with the surface and influences the ball through

Stokes’s law drag. The dynamics of the ball can also be Ys(7)=sin(7+ 7g), (6)

considered to be one dimensional. The vertical position of

the ball,z, and the surfacezs, obey the equations where

which characterize the viscous dissipation and acceleration
bf the surface, respectively.

(1-e%7
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FIG. 1. Bifurcation diagram foA =0.05 plotted in the space of FIG. 2. Bifurcation diagram foA = 0.05 obtained by decreasing
7= vs I'. At each value ofl", the system is relaxed for 10000 I'. Two different sets of data are shown. The upper branch was
bounces and the last 256 points are plotiéds increased by 0.01 obtained starting al’=1.4 (within the chaotic regionand the

between measurements. lower branch starting af =1.23. The measured values of are
very sensitive to the initial conditions and to the way in whiclis
A A2 varied.
- 2! :8: 2" (7) . . . )
1+A 1+A regime, there are apparent discontinuous changes in the mea-

sured flight time ad” is varied. They are close to values of
7 that are integer multiples of the driving periodg
_ =2nr.

Y(7e) =Ys(7e), ® To understand the existence of the discontinuous jumps
which defines the time of flighty. If the collision is as- between seemingly different solutions in Fig. 1, we have
sumed to be elastic, the ball will then leave the surface agonsidered the behavior of the ball Esis reduced. This is
y<(7e) with a velocity shown in Fig. 2. We have started from valued othosen to

illustrate specific behaviors. The detailed structure depends
very sensitively upon the way in which is reduced, for
©) example, during which part of the motion it is changed. The
F ball can remain in a period-2 cycle even fox 1, or it can
evert to period-1 behavior as observed earlier. Similarly,
igher order branches can be accessed if the ball is given a
large initial velocity, or if it is dropped onto the surface. For
each of the single-period branches with flight times

The ball next collides with the surface when

dy
dr

dys

v=2q7

F

We have used the above equations to determine the m
tion of the ball numerically. For given initial conditions, Eq.
(8) can be solved to find the time of flight until the next
collision. Equation(9) can then be used to calculate the new ) ~ : ) >
launch velocity, which acts as the input for the following =2_n7r, a linear stability analysis shows that the first bifur-
interval of the motion. Repeating this procedure, one carfation occurs when
build up the exact trajectory of the ball for all subsequent
times.

Figure 1 shows a plot of the time of flight againstl’.

We choose to plot¢ rather than the phase of the surface at
the collision because it contains important information aboutvherex=n=A coth(yzA). For largen, this value ofl” varies

the particle’s actual trajectory. The plot was generated byinearly with n. The complex behavior shown in Fig. 1 re-
relaxing the system for 10 000 bounces at eBand record-  sults from a superposition of the different stable branches of
ing the last 256 flight times. After each measuremé&ntvas  the bifurcation diagram. Which of the trajectories the ball
increased by a small amount, which mimics the experimentalakes depends upon the initial conditions and the way in
method that would be used to determine such a[@ptThe  which I' is varied. The system thus exhibits extremely hys-
value of A=0.05 corresponds approximately to a bronzeteretic behavior.

sphere of diameter 0.5 mm in the presence of air. For the range of that we have considered, we note that

We first consider the dynamics of a ball, which initially is there are very few values of-<0.1. This suggests that the
at rest on the surface. For slightly greater than 1, the ball ball does not undergo a rapid sequence of collisions resulting
exhibits periodic motion with the period of the vibrating sur- in a locking solution. To test this further, we have performed
face, 7e=2m. AsT increases, there are period-doubling bi- long numerical calculations of the trajectories for=2. We
furcations around this period-1 solution. However, #or find that the ball remains in motion even f@mscalegltimes
~1.23, the motion jumps to a two cycle centered on thecorresponding to several months. While no numerical work
period-2 solution;/.=4. On increasind” further, there is  can rule out the existence of locking solutions, our results are
a second bifurcation cascade uplte=1.38, beyond which highly suggestive that the ball with air damping alone exhib-
the system exhibits chaotic behavior. Even within the chaotidgts truly chaotic dynamics.

l 1/2
['=(1+A%%2 x2+P(1—x)2> , (10
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14 The dynamics described by Ed) assumes that the air is

] moving with the surface. If the surface is constructed to be
permeable to aif14], the air above the surface will remain
largely unaffected by the surface’s motion. The correspond-
ing equations governing the ball’'s motion are the same as in
Egs. (6) and (7) but with « and 8 both equal to zero. By
making the change of variableuy=(1+A?)Yqv,

+ a sin(ry) — Bcos(r)], the recursion relation fotw in the
moving air problem maps exactly onto that for the static air
problem. The only difference is thatis rescaled by a factor
(1+A%2 e,

I',=1+A»)Yr,, (12

FIG. 3. Bifurcation diagram fon=0.5 obtained by increasing Where the subscripts ands refer to the moving and static
I from 1. air problems, respectively. Thus, the bifurcation diagrams for
the static air problem have exactly the same structure as de-
The bifurcation diagram for a higher value of the dampingsc“beq above for the moving air problem. Note, that in order
parameterA is shown in Fig. 3. It exhibits a much more (O achieve the same flight timé, must be greater thah .
complex structure than in the weakly damped case. Along NUS: for a giverl’, a ball damped by static air will be more

with the period-doubling transitions leading to chaotic be- ctive than a ball mfluer_u:ed by moving air. Th's has impor-
havior, we find values of where there are three cycles, andtant consequences for fine granular materials vibrated in po-

. ; . " ! rous containers.
regions where chaos gives way to simple periodic motion. In It is clear that the model that we have considered repre-

general,_lncreasmg tend§ to extgnd the region of stability gopnq 5 rather idealized treatment of an air-damped bouncing
of the single-period motion to higher values Bf as de- 5 However, given the simplicity of the model, the system
scribed by Eq(10). Thus, the period-doubling cascades as-gypipjts rather rich and complex dynamical behavior. Our
sociated with each of the-=2n solutions are more appar- fingings show that the coupling between the particle’s mo-

ent. For the range of parameters that we have investigategs, and the motion of the air induced by vibration can have
and the times that are accessible by our numerical metho@ignificam effects on the dynamics of the system.

we find no evidence that the ball comes to rest on the sur-
face. Thus, even for high values of the damping parameter, We are grateful to Peter King for numerous fruitful dis-

the motion remains chaotic. cussions. P.S. acknowledges the ORS for financial support.
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